コラムバックナンバー
アナリティクスアソシエーション 大内 範行
発信元:メールマガジン2026年1月14日号より
2026年が明けました。今年は「生成AIを使ったデータ分析」が、大きなテーマになりそうです。
年初のコラムですし、まずは少し広い視野で、データ分析の進化を見据えてみたいと思います。
漠然とSFのような世界を妄想しても収拾がつかなくなりますので、クルマの自動運転レベルになぞらえて、生成AIによるデータ分析の進化を3つのレベルで整理してみます。
[生成AIによるデータ分析の進化レベル(3段階モデル)]
大まかですが、生成AIのカバーする範囲や実行の主導権が徐々に人からAIに移っていきます。
2026年の年初にいる私たちは、Level 1のスタートラインに立っています。この段階は、AIの活用も断片的で、試行錯誤を重ねる段階です。
ChatGPTやGeminiに分析の作業や改善提案を聞きながら、データ分析作業を進めている人も増えているでしょう。
昨年末、GA4でも、生成AIの「アナリティクスアドバイザー」がリリースされました(現在、言語設定は英語のみです)。私も年末にいじってみましたが、まだまだ制約は多いものの、回答の質は悪くないと感じました。
「サイトのパフォーマンスはどうですか?」「成長の要因はなんですか?」といった漠然とした問いでも、データで回答を返してくれます。
特定のLPのユーザーを、トラフィック、新規/リピーター、閲覧ページなどで分析してもらう、といった依頼にも応えてくれます。
普段はGA4を「使いにくい」「難しい」と感じて遠ざけている人でも、ユーザー行動や傾向を理解するとっかかりにはなりそうです。
一方で「サイトを分析してファネル設定を提案して」と依頼すると、丁寧に断られてしまいます。あくまで対象範囲は、GA4の内部データソースに限定されるようです。
本格的に改善案を導くのは難しいものの、ここから始めて、GA4と他のデータを組み合わせた、次の分析へ進むのはよいでしょう。
あくまできっかけのひとつですし、今後の進化に期待したいと思います。
とはいえ私たちの目的は、ツールが使いやすくなることではなくビジネスの改善です。今後、データ分析がLevel 2に近づいていくとき、私たちはどんなデータ分析を行っているのでしょうか。
アクセス解析ツールのUI画面はあるのでしょうか?
自然言語での分析が本格的に進化すれば、おそらくツールの存在は消えていくように思います。
分析の対象となるデータソースも、GA4単体ではなく、マルチなデータソースを横断的に扱うはずです。
サイトそのものだったり、CRM、売上データ、SNSの反響や問い合わせ、商品レビューなど、構造化データも非構造化データも、網羅的に扱うことでしょう。
ただ、用意するデータ基盤の精度品質にどの程度のレベルを求めるべきなのか? ここがLevel 2に移行できるかどうかの鍵になりそうです。
SEOにしても、広告にしても、その改善はユーザーに向けて行います。
これまではユーザーテストやアンケートを実施して、定性的なユーザーデータを組み合わせると、改善までの精度が上がっていきました。
ただ、手間もかかりましたから、簡単ではありません。
今や生成AIの「AIペルソナ」や、アンケートに生成AIが回答する「AIモニター」といった取り組みも進んでいます。
たとえば電通は、1億人規模のAIペルソナを使ってアンケートなどの市場調査を仮想的に実行できる「People Model(ピープルモデル)」をリリースしています。
運営堂の森野さんが、ブログ記事で、AIペルソナによる分析手法を紹介してくれています。これは、さらに詳しくお聞きしたい内容です。
「GA4のデータと定性データと生成AIで集客とページの改善をする方法」(運営堂)
おそらくこれ以外にも様々な生成AIを使った取り組みが出てきます。どれも完璧ではありませんが、きっとそれぞれに注目すべき点があるはずです。
未成熟な段階なので、実は手間もかかり、失敗も多いですが、かえって面白いと感じる人も多いでしょう。
私は久しぶりにワクワクしています。年末年始も、時間を見つけては、生成AIで分析を重ねていました。
森野さんや小川さん、いちしまさんなど、こうした方々の取り組みを深く聞くことができれば、その中から自分に合った取り組みや、自分なりの工夫も見つけられるはずです。
「【生成AIとの全チャット公開】「ウェブサイトの改善」は生成AIで、どこまで可能か?」(小川卓)
「AIがGAで分析する時代に、計測データの品質向上とその設計が不可欠な理由」(いちしま泰樹)
もちろん、その中にはバズる目的だけのものも山のように出てきます。
本当に重要なのは、Level 1の段階でも、どれだけ実質的なビジネス改善につなげられるかです。
a2iでは、生成AIの話題を追いかけるだけでなく、実際の現場での試行錯誤やうまくいかなかった経験も含めて、リアルな声を伝えていきたいと考えています。
2026年も、データ分析の“今”と“少し先”を、現実的な目線でお届けしていければと考えています。
アナリティクスアソシエーション代表
個人情報保護士、専門統計調査士
日本アイ・ビー・エム、マイクロソフト、Googleなどを経験。Googleでは2011年から7年間、Googleアナリティクスとダブルクリック広告のマネージャなどを歴任。
2019年からはJellyfish 副社長 VP Analyticsとして参画し、2021年からはアユダンテ株式会社でCSOに就任。
並行して2008年から協議会「アナリティクスアソシエーション (a2i.jp)」代表としてデジタルマーケティングのデータ分析の普及に取り組んでいる。
仕事の傍SEOやアナリティクスの書籍も多数執筆。
主な著書『できる100ワザ SEO&SEM』、『できる100ワザ Google Analytics』、『SEM Web担当者が身につけておくべき新100の法則』など。
2026/01/22(木)
オンラインセミナー「検索行動・消費者分析ツール「DS.INSIGHT」の最新機能と活用事例」|2026/1/22(木)
ツール研究会の3回目は、DS.INSIGHTがテーマです。 このセミナーは、どなたでも参加可能です。 一般の方の申込には、ライト会員(登録・ …
2025/12/03(水)
オンラインセミナー「GAの分析とモニタリングの適材適所ガイド― Looker Studio、探索、スプレッドシート、MCPサーバーの使い分け」|2025/12/3(水)
このセミナーでは、Google アナリティクス 4(GA4)のデータを効果的に活用するために、目的に応じた最適なレポート機能の選び方と使い分 …
2025/11/18(火)
【大型イベント開催】a2i秋の広告祭 デジタル広告の役割を再設計しよう|2025/11/18(火)
a2i秋の広告祭 デジタル広告の役割を再設計しよう デジタル広告のこれからを半日で学ぶ!豪華11名のスペシャリストが集結! デジタル広告のテ …
【コラム】生成AIはデータ分析をどう変えていくのか?自動運転レベルに学ぶ3段階の進化へ
アナリティクスアソシエーション 大内 範行2026年が明けました。今年は「生成AIを使ったデータ分析」が、大きなテーマになりそうです。 年初のコラムですし、まずは少し広い視野で、デー …
【コラム】生成AI時代 データ分析に必要な”料理人のスキル”は?
アナリティクスアソシエーション 大内 範行「生成AIでデータ分析は、どこまで簡単でおいしくなるのだろうか?」 今年最後のコラムです。来年に向けてそんなテーマを考えてみたいと思います。 …
【コラム】AIの活用が進む今だからこそ、デジタルに依存しすぎない視点を
Yuwai株式会社 田中 広樹a2i秋の広告祭が終わりました。ご参加いただいた方、ご登壇いただいた方、会場の運営をいただいた方皆さまに感謝を述べたいと思います。ありがとう …