コラムバックナンバー

2026年が明けました。今年は「生成AIを使ったデータ分析」が、大きなテーマになりそうです。
年初のコラムですし、まずは少し広い視野で、データ分析の進化を見据えてみたいと思います。

漠然とSFのような世界を妄想しても収拾がつかなくなりますので、クルマの自動運転レベルになぞらえて、生成AIによるデータ分析の進化を3つのレベルで整理してみます。

[生成AIによるデータ分析の進化レベル(3段階モデル)]

  • Level 1:AIアシストによる分析 「聞けば答える・改善案やヒントを断片的に出す・改善の実行は人間」
  • Level 2:AI主導の探索分析 「AIが横断的に分析し改善や予測をし、人間が選択し監督する」
  • Level 3:AIエージェント型意思決定 「目的地を人が決め、分析、改善、検証までAIが自律的に実行」

大まかですが、生成AIのカバーする範囲や実行の主導権が徐々に人からAIに移っていきます。

2026年の年初にいる私たちは、Level 1のスタートラインに立っています。この段階は、AIの活用も断片的で、試行錯誤を重ねる段階です。
ChatGPTやGeminiに分析の作業や改善提案を聞きながら、データ分析作業を進めている人も増えているでしょう。

昨年末、GA4でも、生成AIの「アナリティクスアドバイザー」がリリースされました(現在、言語設定は英語のみです)。私も年末にいじってみましたが、まだまだ制約は多いものの、回答の質は悪くないと感じました。

「サイトのパフォーマンスはどうですか?」「成長の要因はなんですか?」といった漠然とした問いでも、データで回答を返してくれます。
特定のLPのユーザーを、トラフィック、新規/リピーター、閲覧ページなどで分析してもらう、といった依頼にも応えてくれます。

普段はGA4を「使いにくい」「難しい」と感じて遠ざけている人でも、ユーザー行動や傾向を理解するとっかかりにはなりそうです。

一方で「サイトを分析してファネル設定を提案して」と依頼すると、丁寧に断られてしまいます。あくまで対象範囲は、GA4の内部データソースに限定されるようです。

本格的に改善案を導くのは難しいものの、ここから始めて、GA4と他のデータを組み合わせた、次の分析へ進むのはよいでしょう。
あくまできっかけのひとつですし、今後の進化に期待したいと思います。

とはいえ私たちの目的は、ツールが使いやすくなることではなくビジネスの改善です。今後、データ分析がLevel 2に近づいていくとき、私たちはどんなデータ分析を行っているのでしょうか。

アクセス解析ツールのUI画面はあるのでしょうか?
自然言語での分析が本格的に進化すれば、おそらくツールの存在は消えていくように思います。

分析の対象となるデータソースも、GA4単体ではなく、マルチなデータソースを横断的に扱うはずです。
サイトそのものだったり、CRM、売上データ、SNSの反響や問い合わせ、商品レビューなど、構造化データも非構造化データも、網羅的に扱うことでしょう。
ただ、用意するデータ基盤の精度品質にどの程度のレベルを求めるべきなのか? ここがLevel 2に移行できるかどうかの鍵になりそうです。

SEOにしても、広告にしても、その改善はユーザーに向けて行います。
これまではユーザーテストやアンケートを実施して、定性的なユーザーデータを組み合わせると、改善までの精度が上がっていきました。
ただ、手間もかかりましたから、簡単ではありません。

今や生成AIの「AIペルソナ」や、アンケートに生成AIが回答する「AIモニター」といった取り組みも進んでいます。
たとえば電通は、1億人規模のAIペルソナを使ってアンケートなどの市場調査を仮想的に実行できる「People Model(ピープルモデル)」をリリースしています。

運営堂の森野さんが、ブログ記事で、AIペルソナによる分析手法を紹介してくれています。これは、さらに詳しくお聞きしたい内容です。

「GA4のデータと定性データと生成AIで集客とページの改善をする方法」(運営堂)

おそらくこれ以外にも様々な生成AIを使った取り組みが出てきます。どれも完璧ではありませんが、きっとそれぞれに注目すべき点があるはずです。
未成熟な段階なので、実は手間もかかり、失敗も多いですが、かえって面白いと感じる人も多いでしょう。
私は久しぶりにワクワクしています。年末年始も、時間を見つけては、生成AIで分析を重ねていました。

森野さんや小川さん、いちしまさんなど、こうした方々の取り組みを深く聞くことができれば、その中から自分に合った取り組みや、自分なりの工夫も見つけられるはずです。

「【生成AIとの全チャット公開】「ウェブサイトの改善」は生成AIで、どこまで可能か?」(小川卓)
「AIがGAで分析する時代に、計測データの品質向上とその設計が不可欠な理由」(いちしま泰樹)

もちろん、その中にはバズる目的だけのものも山のように出てきます。
本当に重要なのは、Level 1の段階でも、どれだけ実質的なビジネス改善につなげられるかです。

a2iでは、生成AIの話題を追いかけるだけでなく、実際の現場での試行錯誤やうまくいかなかった経験も含めて、リアルな声を伝えていきたいと考えています。

2026年も、データ分析の“今”と“少し先”を、現実的な目線でお届けしていければと考えています。

コラム担当スタッフ

大内 範行

アナリティクスアソシエーション
代表
オオウチコム

アナリティクスアソシエーション代表  
個人情報保護士、専門統計調査士
日本アイ・ビー・エム、マイクロソフト、Googleなどを経験。Googleでは2011年から7年間、Googleアナリティクスとダブルクリック広告のマネージャなどを歴任。
2019年からはJellyfish 副社長 VP Analyticsとして参画し、2021年からはアユダンテ株式会社でCSOに就任。
並行して2008年から協議会「アナリティクスアソシエーション (a2i.jp)」代表としてデジタルマーケティングのデータ分析の普及に取り組んでいる。
仕事の傍SEOやアナリティクスの書籍も多数執筆。
主な著書『できる100ワザ SEO&SEM』、『できる100ワザ Google Analytics』、『SEM Web担当者が身につけておくべき新100の法則』など。

主な講演

一つ前のページに戻る

a2i セミナー風景イメージ

あなたも参加しませんか?

「アナリティクス アソシエーション」は、アナリティクスに取り組む皆さまの活躍をサポートします。会員登録いただいた方には、セミナー・イベント情報や業界の関連ニュースをいち早くお届けしています。

セミナー・イベント予定

予定一覧へ

コラムバックナンバー

バックナンバー一覧へ