コラムバックナンバー
Option合同会社 柳井 隆道
発信元:メールマガジン2022年12月7日号より
ここ数年で機械学習が身近になり、少しずつ機械学習を活用したツールが出現してきました。物事を予測する種類のものから翻訳、画像診断、画像生成などいろいろあります。デジタルマーケティングの世界では、広告配信などは機械学習による最適化が主流になってきました。
機械学習のアルゴリズム自体は結構オープンソース化されています。たとえばディープラーニングの技術はTensorFlowなどで公開され、誰もが実装できるようになっています。それ以外にも単純な予測や分類を行うXGBoostやLightGBMといった勾配ブースティング木などもすべてオープンソース化され、Pythonなどのプログラムから簡単に使えるようになっているのです。
さらにはAutoMLサービスではそういったさまざまな機械学習アルゴリズムを同時に複数利用してモデルを構築するなど、データさえあればモデルを比較的簡単に構築できるようになってきています。
以下が機械学習を活用する典型的な手順です。
1. 収集したデータをアルゴリズムに渡して学習を行う
2. その結果モデルファイルが構築される(学習済みモデル)
3. 目的のタスクを実行させる
3.1. モデルと新データを機械学習アルゴリズムの予測用関数に渡し、新データに対する分類や予測を行う
3.2. モデルを機械学習アルゴリズムの予測用関数に渡し、新たな画像生成などを行う
つまり学習済みモデルがなければ、さらには学習のためのデータがなければ3までたどり着きません。
機械学習アルゴリズムがオープンソース化されたことでアルゴリズムそのものの価値は小さくなり(それ単体でお金を取ることができなくなっている)、個別のタスクに適応した学習済みモデルにこそ価値があるという時代になってきているのです。
どんなに優秀な翻訳エンジンのアルゴリズムの部分だけ持ってきても、モデルがなければ翻訳を行えません。そのモデルを構築するために膨大な言語のデータが必要になります。
機械学習全盛時代においてデータを持つ者こそが強いというのは、こういうカラクリなのです。
そんな環境の中、機械学習に対峙する人間の役割は何でしょうか。
もちろんアルゴリズムを作るというのも大きな仕事ですが、大部分の人にとっては必要ありません。むしろ既存のアルゴリズムを知り、適切な局面で使いこなすニーズのほうが膨大です。アルゴリズムによってできること、得手不得手は決まっています。数多くあるアルゴリズムから使い分けることや、同じアルゴリズムでもチューニングを行うことが重要です。ビジネス課題を機械が対応できる形に置き換えることも必要です。たとえば「売上を増やしたい」は「売上を予測し、同じコストで予測売上を最大化する資源配分を行う」となります。これが「機械学習を使う」という役割です。
そのためのデータを作ること、機械が適切に学習できるようにデータを加工することも重要です。機械学習やデータ分析においては「Garbage In, Garbage Out」(データがゴミなら結果もゴミ)とよく言われます。前処理も重要ですね。
能動的にデータを集めることには限界があります。インプット(説明変数)に対するアウトプット(目的変数)の正解と不正解のラベリングを限られた関係者だけが行うのは限界があります。そこにユーザが通常のユースケースの中で正解をフィードバックする仕掛けがあれば学習用のデータが大幅に増えます。つまりデータが集まる仕掛けを作ることが重要なのです。機械学習そのものの知識はなくても、ビジネス設計の領域です。むしろ機械学習エンジニアには苦手な分野かもしれません。この点Googleはうまいです。
デジタルマーケティングにおける具体的な応用だと、広告運用は典型的です。検索連動型広告では、以前は人間がキーワードを登録し、入札単価を入力するのが運用の大きな部分を占めていました。今では広告プラットフォームが適切に、なるべく早く学習できるように設定することが運用の中心になっています。コンバージョンのインポートというのが教師データを与えること、つまり学習になるのですが、学習がはかどるようなコンバージョンデータを作ることも重要です。
われわれの仕事の現場で機械学習が広がる中、意識して自分のポジションを作っていくことも今後重要だと思います。
東京大学を卒業後、webマーケティングやサービス企画、システム開発などに従事。
デジタルマーケティングの世界に落ち着き、事業会社、広告代理店を経て2014年に独立。
現在は大小さまざまの事業会社、広告代理店などに対して、テクノロジー観点からデジタルマーケティングの支援を行っている。データ計測の設計、実装から分析、マーケティングオートメーションや広告運用などの施策との連携まで扱う。
さまざまな規模の経験から、企業の身の丈にあったデジタルマーケティングの企画に強い。フリーランスで活動していたが、2017年から法人化。
2025/10/30(木)
オンラインセミナー「Microsoft Clarity×GA4横断分析で実現するサイト改善」|2025/10/30(木)
ヒートマップやセッションレコーディングを導入しているものの、「何を見ればよいのか分からない」「改善施策に繋がらない」と感じたことはありません …
2025/11/18(火)
【大型イベント開催】a2i秋の広告祭 デジタル広告の役割を再設計しよう|2025/11/18(火)
a2i秋の広告祭 デジタル広告の役割を再設計しよう デジタル広告のこれからを半日で学ぶ!豪華11名のスペシャリストが集結! デジタル広告のテ …
2025/10/16(木)
オンラインセミナー「Cookieレス時代に取り組むべき攻めと守りの計測方法」|2025/10/16(木)
近年、AppleのITP(Intelligent Tracking Prevention)や各国のプライバシー規制強化により、従来のCook …
【コラム】広告の効果計測、誰を頼ればいいのか? ―混沌を乗り越える越境チーム作り
アナリティクスアソシエーション 大内 範行広告の計測まわりでふつふつと音を立てるマグマ溜まり 「最近の広告レポート、本当にこの数字に頼っていいのかが疑問なんです」 最近、こんな問いか …
【コラム】わからない・忙しい・お金がないをDMAICで解決する
運営堂 森野 誠之イントロ 小さな会社の支援をしていると、やることはわかっていても進まないことが本当に多いです。理由はほぼこの3つ。 わからない 忙しい お金 …
【コラム】参照元Googleめ、お主は私の知っているGoogleではないのだな……
アナリティクスアソシエーション 大内 範行少し前、空気清浄機を買うのに、生成AIに頼ってみました。 おすすめ候補をリストアップしてもらい、機能やスペックを比較し、こだわっているポイン …