コラムバックナンバー
Option合同会社 柳井 隆道
発信元:メールマガジン2022年12月7日号より
ここ数年で機械学習が身近になり、少しずつ機械学習を活用したツールが出現してきました。物事を予測する種類のものから翻訳、画像診断、画像生成などいろいろあります。デジタルマーケティングの世界では、広告配信などは機械学習による最適化が主流になってきました。
機械学習のアルゴリズム自体は結構オープンソース化されています。たとえばディープラーニングの技術はTensorFlowなどで公開され、誰もが実装できるようになっています。それ以外にも単純な予測や分類を行うXGBoostやLightGBMといった勾配ブースティング木などもすべてオープンソース化され、Pythonなどのプログラムから簡単に使えるようになっているのです。
さらにはAutoMLサービスではそういったさまざまな機械学習アルゴリズムを同時に複数利用してモデルを構築するなど、データさえあればモデルを比較的簡単に構築できるようになってきています。
以下が機械学習を活用する典型的な手順です。
1. 収集したデータをアルゴリズムに渡して学習を行う
2. その結果モデルファイルが構築される(学習済みモデル)
3. 目的のタスクを実行させる
3.1. モデルと新データを機械学習アルゴリズムの予測用関数に渡し、新データに対する分類や予測を行う
3.2. モデルを機械学習アルゴリズムの予測用関数に渡し、新たな画像生成などを行う
つまり学習済みモデルがなければ、さらには学習のためのデータがなければ3までたどり着きません。
機械学習アルゴリズムがオープンソース化されたことでアルゴリズムそのものの価値は小さくなり(それ単体でお金を取ることができなくなっている)、個別のタスクに適応した学習済みモデルにこそ価値があるという時代になってきているのです。
どんなに優秀な翻訳エンジンのアルゴリズムの部分だけ持ってきても、モデルがなければ翻訳を行えません。そのモデルを構築するために膨大な言語のデータが必要になります。
機械学習全盛時代においてデータを持つ者こそが強いというのは、こういうカラクリなのです。
そんな環境の中、機械学習に対峙する人間の役割は何でしょうか。
もちろんアルゴリズムを作るというのも大きな仕事ですが、大部分の人にとっては必要ありません。むしろ既存のアルゴリズムを知り、適切な局面で使いこなすニーズのほうが膨大です。アルゴリズムによってできること、得手不得手は決まっています。数多くあるアルゴリズムから使い分けることや、同じアルゴリズムでもチューニングを行うことが重要です。ビジネス課題を機械が対応できる形に置き換えることも必要です。たとえば「売上を増やしたい」は「売上を予測し、同じコストで予測売上を最大化する資源配分を行う」となります。これが「機械学習を使う」という役割です。
そのためのデータを作ること、機械が適切に学習できるようにデータを加工することも重要です。機械学習やデータ分析においては「Garbage In, Garbage Out」(データがゴミなら結果もゴミ)とよく言われます。前処理も重要ですね。
能動的にデータを集めることには限界があります。インプット(説明変数)に対するアウトプット(目的変数)の正解と不正解のラベリングを限られた関係者だけが行うのは限界があります。そこにユーザが通常のユースケースの中で正解をフィードバックする仕掛けがあれば学習用のデータが大幅に増えます。つまりデータが集まる仕掛けを作ることが重要なのです。機械学習そのものの知識はなくても、ビジネス設計の領域です。むしろ機械学習エンジニアには苦手な分野かもしれません。この点Googleはうまいです。
デジタルマーケティングにおける具体的な応用だと、広告運用は典型的です。検索連動型広告では、以前は人間がキーワードを登録し、入札単価を入力するのが運用の大きな部分を占めていました。今では広告プラットフォームが適切に、なるべく早く学習できるように設定することが運用の中心になっています。コンバージョンのインポートというのが教師データを与えること、つまり学習になるのですが、学習がはかどるようなコンバージョンデータを作ることも重要です。
われわれの仕事の現場で機械学習が広がる中、意識して自分のポジションを作っていくことも今後重要だと思います。
東京大学を卒業後、webマーケティングやサービス企画、システム開発などに従事。
デジタルマーケティングの世界に落ち着き、事業会社、広告代理店を経て2014年に独立。
現在は大小さまざまの事業会社、広告代理店などに対して、テクノロジー観点からデジタルマーケティングの支援を行っている。データ計測の設計、実装から分析、マーケティングオートメーションや広告運用などの施策との連携まで扱う。
さまざまな規模の経験から、企業の身の丈にあったデジタルマーケティングの企画に強い。フリーランスで活動していたが、2017年から法人化。
2025/01/30(木)
オンラインセミナー「JADE presents:GA4と「Amethyst」でここまでできるユーザー分析」|2025/1/30(木)
「Googleアナリティクス 4(GA4)は見たいデータをなかなか見られない、使いにくい」という声をよく耳にします。また「ユーザー軸のツール …
2024/12/10(火)
オンラインセミナー「【GA4導入・活用術】事業会社と自社サービス担当者が語る!」|2024/12/10(火)
GA4を導入したいけれど、チーム内の理解を得られずに進められない、または導入はしたものの活用しきれていない――そんなお悩みはありませんか? …
2024/11/13(水)
オンラインセミナー「参加無料!超初心者向け!GA4にログインはできた。その次に何をすればいいかわからない人のためのセミナー。サイト改善の知恵袋付きです。」|2024/11/13(水)
GA4にログインしても何が何だかさっぱりわからないことは多いですよね。でも、Webサイトのことは知りたいし、できれば改善点も知りたい…。そん …
【コラム】新しい生成AI検索サービス 効率的な答えが見つかることは本当に幸せか?
アナリティクスアソシエーション 大内 範行ChatGPT searchが、一部のユーザーにリリースされています。 私はTeamsプランで契約があるためChromeのデフォルトサーチに …
みなさんこんにちは。渋谷にある大学、日本経済大学で教員をしております、金谷武明と申します。以前はGoogleという会社でYouTubeで検索 …
衆議院選挙が終わりました。選挙のたびに開票の時刻と同時に当選確実が出る「出口調査」の予測が話題になります。 今回、開票と同時に出した主要メデ …